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A GAME THEORY SOLUTION TO AN AIMING PROBLEM 

,, by 

Hans Georg Diess 

ABSTRACT 

This paper discusses the game theory solution to the following 

aiming problem: 

An attacker receives information about the location of a 

target and launches a weapon.  It is assumed that, at the 

moment it is supposed to be hit, the target may be anywhere 

within an annulus with radii  Rj , Rz,      which depend on the 

weapon delivery time and the target evasion manoeuvres.  ' 

Using a polar coordinate system  R, 6, the assumption is 

made that the target is uniformly distributed in  6, but 

chooses  R  between the limits  Rj and  R^  in order to 

maximize its chance of escapee  The attacker will then 

distribute the weapon aimpoints uniformly in the angle  6 

(over its range  0, 2TT) .  For a single weapon  9=0  is 

chosen arbitrarily and the problem is reduced to the choice 

of the radial coordinate  X  for the aimpoint.  The pay-off 

for this two-person game, where both players have continuous 

strategies, is expressed by the probability that the distance 

of the target from the impact point is less than the effective 

damage radius,  e,  of the weapon.  Pure and mixed strategy 

solutions are discussed and conditions are derived for the 

normalized parameters 2e/(R2 - Rj )  and  Rg/CR^ - R^ )  that 

allow one to determine the type of strategies for a given 

set of values of the parameters  e, Rj and Rg . 



INTRODUCTION 

In warfare, as well as in many games, a successful conclusion is 

often the result of out-guessing an opponent.  The ability to 

out-guess the opponent usually increases with experience and a 

thorough knowledge of the moves, available to both sides. 

Although complex situations are often not susceptible to 

mathematical analysis, many of the simpler parts of complex 

situations are, and the results of such analyses can often be 

very useful in the determination of the best manoeuvres, given 

certain conditions. 

This paper, dealing with a rather simple geometry of possible 

target location, weapon impact point and effective range, 

illustrates that for both target and attacker the best choice 

of manoeuvres is well defined. 

The paper concerns the interplay between an attacker and a 

target that has been detected by the attacker at time zero. 

It is assumed that the attacker has no information about the 

target's motion at the instant of detection and that he is 

not sure that it will be possible to determine the location 

of the target at some later time.  Therefore a weapon is 

launched with the minimum delay in order to reduce the 

uncertainty about the target's position at the instant of the 

attack.  Given the time between detection and the instant of 

weapon impact, the target can be expected to be in an annulus 

centred at the point of detection.  This is shown in Fig. 1, 

in which  R^  and  Rg  are the distances the target can travel 

using its minimum and maximum evasion speeds, respectively. 

Using a polar-coordinate system, the position of the target 

can be described by a radius  R  and an angle  6,  with the 

restrictions: 

Rl ^ R < Rs 

The area defined by the above inequalities will be called the 

probability area. 



*• X 

FIG. 1 PROBABILITY AREA 

For the attacker it is assumed that one weapon is fired at an 

aimpoint having coordinates  X, 0,  Because of the symmetry of 

the probability area the coordinate  9  is chosen arbitrarily 

as  9 = 0, 

The following discussion will therefore be directed to the 

problem of the choice of the optimum X-coordinate of the 

aimpoint and the optimum evasion speed of the target. 



1.     DEFINITION OF THE GAME 

To describe the game being studied it will be necessary to 

specify the strategies of the two players and the pay-off as 

a function of these strategies. 

1.1 Strategies for the Attacker 

As already pointed out in the introduction, the strategies 

of the attacker concern the choice of the value of  X : the 

distance between the aimpoint and the point of detection of 

the target. 

1.2 Strategies for the Target 

The target has, in principle, a two-dimensional set of 

strategies, namely the choices of the polar coordinates  6 

and  R  of its position in the probability area at the instant 

of weapon impact. 

It is assumed that  0  is uniformly distributed in the 

interval 

0 < 9 ^ 2 TT .        " ; 

However, the distance  R  of the target from the point of its 

detection is chosen from the interval 

Rj < R <: Rg  , 

i 

1.3 Pay-off 

Consider now a target at a distance  R  from the point of 

detection and at a distance  D  from the aimpoint.  Knowing 

the distribution of the impact points of the weapon around the 

aimpoint and the effective damage radius, e, of the weapon, the 

probability that the distance between the target and the impact 



point of the weapon is less than  e  can be calculated.  This 

probability will be used as the pay-off for the pair  R, X 

of strategies for target and attacker, respectively. 

Figure 2 shows the, pay-off  P  as a function of the offset 

distance  D  for various values of the standard deviation a 

of the aiming error distribution which is assumed to be circular 

normal.  It is clear that for  0 = 0  a step function is obtained. 

If the aiming error is small then the pay-off will decrease 

rapidly from one to zero in the vicinity of the value  D = e, 

Finally, for a large error a     the pay-off decreases slowly with 

D. 
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F!G. 2 PAY-OFF GENERAL 

The pay-off can be approximated by a step function such as the 

one shown in Fig. 2.  If then the aiming errors are small,  e' 

will be very close to  e  and the assumption  a=0  is justified. 

For large aiming errors the impact points of the weapon will be 

distributed over a large area and changes in the aimpoint have 

little effect on the pay-off.  For the following calculation of 

the optimum aimpoint the assumption will then be made that the 

standard deviations of the aiming errors are zero. 



Figure 3 illustrates the simplified definition of the pay-off. 

Because the targets are distributed uniformly in angle, and 

since only targets within a distance  e  from the aimpoint are 

successfully attacked, the pay-off, or the proportion of the 

targets within the circle with radius e,  can be expressed by 

a geometric probability.  Suppose the target is at a distance 

R  from the point of detection, then 

2PR 
2rrR 

= i 
TT 

[Eq. 1] 

is the pay-off for a given aimpoint.  We shall use ^  alone 

as the pay-off as  I/TT  is only a proportional factor. 

*" X 

FIG. 3    PAY-OFF -   SIMPLIFIED 

The game for which a solution will be determined can then be 

described as follows: 

The two players, the target and attacker, have continuous 

strategies, namely the selections of 

R = distance travelled by the target, R, ^R^Rg  and 
X = aimpoint coordinate for the attacker's weapon, X^O 

6 



The pay-off for a given pair of strategies is defined by Eq. 1.  ' 

Since the pay-off is proportional to the angle  ^  with 

farccos (^' IRY  ~ ^' ) if |R-X|<e 

L  0 if |R- X( >e 

strategies are chosen such that  g  is maximized by the attacker 

and minimized by the target. 



2. SOLUTIONS OF THE GAME 

2 .1    Introduc"bory 

The aim of this chapter is to solve the game for pure and mixed 

attacker strategies and to derive conditions for the transition 

from one case to the other in terms of the parameters  e, R^ 

and  Rg .  The dimensionality of the problem can be reduced by 

using the dimensionless variables 

u 
2 e 

Rg - Rj Rg - Rj [Eq. 3] 

The advantage of using this particular set of variables soon 

becomes obvious.  It should be noticed that always  v>l. 

From Fig. 4 it is clear that with u<l  for any pure strategy  X 

there will be an interval of values for the distance  R  that 

the target can choose such that the pay-off to the attacker is 

zero.  Therefore  u<l  is a sufficient condition for mixed 

attacker strategies.  It will be shown, however, that the 

transition between pure and mixed attacker strategies will occur 

at values of  u  somewhat greater than unity. 

FIG. 4 EXAMPLE FOR u <1 



Also the assumption is made that  e<Rg , because otherwise complete 

coverage of the probability area is obtained by the pure strategy 

X = 0 . ;,,.:. 

2,2    Pure Attacker Strategy 

The game is solved first for pure attacker strategies, i,e., it is 

assumed that the attacker uses only one aimpoint.  As discussed 

above this requires that u>lc 

For the following discussion it is useful to define an upper limit 

Xs  for the attacker strategy  X  in the sense that  X^  dominates 

all strategies  X>X2.  In this game dominance means that 

PCXg) >3(X)  for all values  R  of the target strategy. 

From Eq. 2 one finds that the derivative of  p  with respect to 

X  is proportional to  X^ - R^ + e^  and hence the maximum of  P 

for given  R  is reached for  X„ = JR^ -  e^ . 

Let  Xg = JK^ -  e^  and note that  X„ s Xg «  Then it follows from 

the convexity of  g(x)  that  P(Xj^) ^ ^{X^) ^ f,{y.)     for  X ^ Xg • 

This is true for all  R < Rg ,  i.e., Xg  dominates all strategies 

X>X3 . 

The strategies actually used by the players then can be restricted 

to the intervals 

0 < X ^ Xg   for the attacker 

and 

Rj ^ R < Rg   for the target 

where 

Xg  =  y Rg^ ~   eF       . [Eq, 4] 

Figure 5 illustrates this special strategy  Xg . 



X 

FIG. 5 DOMINATING STRATEGY ., 

'■ 

Since in this section the game will be solved for pure attacker 

strategies  X,  the necessary assumption is that 

u > 1 

because otherwise the pay-off would be zero for a target behaving 

in an optimum way, as pointed out previously.  Furthermore, one 

notices when using Eq. 2 that  P  is different from zero for all 

X  and  R  satisfying the condition 

|R ~ x| < e   . .,    .       [Eq. 5] 

As the inequality  u>l  is equivalent to , 

Rg - e < Rj + e [Eq. 6] 

[see Eq. 3],  it follows from Eqs. 5 and 6 that  P  is different 

from zero for all values of  R  if  X  is in the interval 

Rg -   e  <  X  <   R^    +  e [Eq. 7] 

10 



2.2.1  Max - Min 

The angle  P  as a function of the target strategy  R  is shown 

in Fig. 6 for several aimpoint coordinates  X  with  X ^ Xg 

where  X^  is defined in Eq, 4. 

X < Rp - e 

1-^R 

•- R 

FIG. 6    EXAMPLE OF PAY-OFF 

The   characteristic  of   the   strategy     X^     is  that  the   pay-offs 

for  both     Rj       and     Rg      are   equal: 

P(R. ,    X.)      =      gCRg,    X^) . + + ' 

Using the notations 

l^(X)  =  P(R^, X),    i = 1, 2      , : 

the following statement can be made. 

If the target minimizes the pay-off  p  for a given aimpoint  X, 

it can be seen from Fig. 6 that  MIN P  is determined by the 

following expression: 

11 



MIN   P 

X   ^ R^ 

R, e  <   X  ^   X + 
<   X  <  min(Rj  + e,   Xg ) 

niin(Rj + e,   Xg )   <   X   ^   Xg 

[Eq. 8] 
+ 

A plot of MIN P as a function of the attacker strategy  X  is 

shown in Fig. 1.      The dashed curves indicate  Pj(X)  for 

X<X  and  PgCx)  for  X > X .  Figure 7 clearly shows that 

MIN 3  has a maximum for that attacker strategy  X  where 

I 

gj (X)    =    gg(x)      , r 

which  is  the   case  for     X     =     X,      and  therefore 

MAX-MIN   g 
X        R 

=     P(X^)     =     p + [Eq.    9] 

MAX-MIN p 

FIG. 7    MAX-MIN 

12 



2.2.2   Min - Max 

The game is solved if it can be shown that MIN-MAX p = MAX-MIN 3 = 

3(X^) .   Attention is therefore concentrated on the interval 

Rg - e,  Rj + e,  which contains the strategy  X . 

As pointed out before, ?{R,  X) is different from zero for all 

values of  X  satisfying Eq. 7 and it is convex with respect to 

R as one can see from Fig, 6 and Eq. 2. 

Suppose now the target uses a mixed strategy and let  pj  and  pg 

be the probabilities of playing the strategies  r^  and v^ , 

respectively.  It follows from the convexity of  g  that 

Pl 3(rj , X) + P2 ^(r. , X) < P(r, X) 

for pure strategies  r  in the interval  rj , rg , 

This is true for all pairs of strategies  rj , r^,      hence also 

for  R| and R^  ,  This means that a mixture between the 

stragies  Ri  and  Rg  is better for the target than any pure 

strategy  R,  since the target is the minimizing player. 

Calling  p  the probability of  R^  and  1 - p  the probability 

of  Rg,  the pay-off can be written as an expected value 

E(0) = pgi(x) + (l~p) p2 (X), 0 < p < 1, Rg - e s X ^Rj + e  . 

[Eq. 10] 

E(3)  is therefore a linear function of p.  Figure 8 shows this 

relationship for values of  X  in the interval  Rg-e^X^R^ +e. 

By maximizing the expected pay-off E(P)  for any mixed strategy 

p  of the target,  MAX E(p)  becomes identical to the envelope 

of all straight lines that can be drawn in Fig, 8,  Consequently, 

the derivative of MAX E( P)  with respect to  p  can be written as 

±Jif^     =  P, (Xp) . e, (Xp)   , [EC 11] 

where  X   maximizes  E(3)  for a given  p.  Obviously, MAXE (p) 

13 



is minimized by the target if it uses a mixed strategy  p  that 

makes the right side of Eq. 11 equal to zero.  This is the case 

for  X  = X,  and therefore ■    ' 
P    + 

MIN MAX E(p) 
P   X 

3(x^) = p^ [Eq. 12] 

Pa(X) 

FlG. 8 M!N~MAX 

2.2.3   Optimum Strategies 

A comparison of Eqs. 9 and 12 yields 

MAX-MIN p 
X   R 

MIN-MAX P 
P   X 

=    3 + 

hence  P. = P(X )  is the value of the game and  X,  is the 

optimum attacker strategy. 

14 



A geometrical interpretation of  X   can be made using Fig. 9 

The circle of radius  e centred at  X,  intersects the two 

limits of the probability area at the same angle  p .     This 

figure yields the realtionship 

/R, + Rs \^      /R. - R, Y 

which has the solution 

/ 
X+  - JR,  Rs + e^ [Eq. 13] 

X 

FIG. 9 OPTIMUM STRATEGY X + 

The mixed optimum strategy  p   of the target is computed in 

Appendix A as a function of the dimensionless variables  u  and 

v: 

(f)=  ^ "■'-"- + T  ,     (v - 1) V V - 1 + p        ^ [Eq. 14] 

As  V  is always greater than 1, the optimum mixed target 

strategy will be in the interval 

0 s p^ ^ 0.5 

15 



because otherwise  u^ < 0.  This means that the target will use 

strategy  R2  more frequently than strategy Rj . 

2.2.4   Saddle-point Solution 

For a saddle-point solution both the target and the attacker 

would have to have pure optimum strategies.  This will be the 

case if  p, = 0. 

Equation 14 then yields 

u2   =  2 V  . 

Replacing  u and v  by their definitions  gives 

j^r^prr^   ' ji Ro^ - e' 
'■2 

,2 

The left-hand side of this equation is equal to  X, [see Eq. 13] 

and the expression on the right is equal to  Xg [see Eq. 4]' 

Therefore X.—X^,     and the pure strategy (saddle-point) solution 

can be stated as follows: 

The attacker's optimum pure strategy is to make  X = Xg , the 

target's optimum pure strategy is to make  R = Rg , and the value 

of the game is 

^{RZ ,   Xg ) == arcsin (e/Rg) 

The inequality  u^ > 2 v is equivalent to  X^ Xg ,  However, it 

has been shown that  Xg  dominates all strategies  X >Xg . 

Therefore  Xg  is the optimum strategy for all values of  u  and 

V  with 

u^ ^ 2 V  , , 

The  u-v domain is therefore divided into two regions:  for 

u^ ^ 2 V both target and attacker have pure optimum strategies. 

16 



This is shown in Fig. 10. The boundary of the area where both 

players have mixed optimum strategies will be discussed in the 

following section.  - 

ATTACKER 

FS^      PURE 

I I      PURE 

^ MIXED 

TARGET 

PURE 

MIXED 

MIXED 

FIG. 10 TYPES OF STRATEGIES 

2.3    Mixed Attacker Strategy 

It is assumed in this section that the attacker is choosing the r ;- 

aimpoint from a set of two values  xj, Xg,  q  being the probability 

of choosing  Xj .  (Upper case letters refer to specific values of 

the variables.) 

Again an assumption has to be made about the value of the variable 

2e u 
Ra — Rl 

17 



This time  u  has to be greater than 0.5j because for smaller 

values of  u  the target can always pick a strategy  r  such 

that the probability of being within weapon range is zero, 

irrespective of whether the attacker chooses  Xj  or  Xg . 

Because, in pure attacker strategies, the target had two strategies 

to choose from, it is reasonable to assume that the target now 

uses three strategies,  r^, , r^      and r^  , with probabilities 

Pi ,  Pa  and pg . 

Using the notation 

^ij  "  ^^^i' ^j^     i = 1, 2, 3,   3   = 1, 2, 

the expected pay-off for this game, where the attacker has two 

strategies  x^ , x^  and the target has three strategies   , 

r, , rg and r^ ,  can be written as 

3 1 
E  =  q S p^ g^j+(.l_q) E  p_^ 3^2    .       ■ [Eq. 15] 

i=l i==l 

The conditions under which this equation is valid are 

q < 1   and  Z)  p. = 1   » 
^ i=l ^ 

1 
I 

For the target strategies  r.  the inequality 
'i 

must hold where  Rj  and  Rg  define the boundary of the 

probability area. 

Finally, it can be assumed without losing generality that 

0 ^ xj < Xg   . ' 

For later reference the pay-off for this game as defined in Eq.15 

is written in two different ways 

11 



3 3 
S     p.    P.3  +q     S     p.    (p.^ -3.3) 
i=l i=l 

[Eq.   16] 

S^Pi   [q3i,+ (l-q)    Pi,] [Eq.   17] 

The  problem   can  then  be   stated  as   follows; 

Compute M=MAX-MIN       E 

and 
m     =     M  I  N 

r. ,p. 
MAX      E 
q, Xj, X2 

under   the   conditions 

q <  1        and       ZJ     p.    =   1 
i=l 

and find those values of  q, Xj ,   Xg and  p^, r.  for which 

m M 

The author did not succeed in solving the problem in this general 

form and therefore concentrated on the problem of transition from 

mixed to pure optimum attacker strategies.  For this purpose some 

assumptions were made, which can be explained by reference to 

Fig. 11. 

 Xs 

FIG. 11    PAY-OFF FOR STRATEGIES   x,  AND   x^ 
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The figure shows the pay-off  ^  for two aimpoints  Xj, X2  as 

a function of the target strategy  r. 

It is now assumed that the target uses the three particular 

strategies  Rj , Rg  and  R3 ,  where  Rj and Rg  define the 

boundaries of the probability area and  R3  is determined by the 

equation 

KR, XJ )  =  p(R, X3)    R=R 3 

This strategy  Rg is likely to be used by the target as a pure 

strategy, if the pay-off is expected to be less than for any 

other strategy. 

Under this assumption the value of the game is calculated as 

shown belowe 

2.3,1  Max - Min 

Suppose the mixed attacker strategy, determined by  X| , Xg 

and q, is given.  Then with Eq. 17 the expected pay-off can be 

written as 

■ ■     3 
E  -= L  p. c. 

1=1 

^i  ^  ^ ^il +(l"q) ^±2   • [Eq. 18] 

Since  Xj , Xg and  q  are given, the values of all  C  are 

known and positive. . 

One observes in Eq, I8 that  E  is a weighted mean of positive 

numbers and hence 

E s MIN C^ 
i 

20 



By minimizing  E,  the target will choose the pure strategy 

p, — 1,      if  C,  is the smallest of the three. 

As we are interested in the three-way mixed strategy solution, 

it follows that all  C.  must be equal, otherwise the pure 

strategy, which minimizes  E, would be chosen.  Therefore 

MIN E  =  q   . 

The attacker then can maximize this by a suitable choice of 

its aimpoint strategy, i.e.  Xj , Xg  and  q,  subject to the 

condition 

To be more explicit, this condition is expressed in terms 

of the  g. .  using the fact that  ^3^ = P33 , 

P 2 2  ^"   Pi 2 
q  =  C2  yields  q  =        R    , /a—a  ^  • [Eq- 19] 

This equation, together with  Cj==C3^ then determines a 

relationship between the  p. • s 

I 31 One can also verify that  Cj = 

Calling  p^i- -  MAX ^3^  then 

Xj,X2 

MAX-MIN E = P^^  . [Eq, 21] 

As each  p. .  in Eq. 20 is a function of  Xj  and  Xg, 

maximizing  psj  under the condition of Eq. 20 determines 

uniquely  xj , Xg  and  P""". 

The mixed strategy  q  can be calculated from Eq, 19. 

21 



2,3.2   Min - Max      ' '' 

Given a mixed strategy of the target with  p. =j=0,  i = 1,2,3, 

it follows from Eq. 16 that a solution with mixed strategies 

for the attacker can be obtained only if 

3 
S -  Z  Pi(3i, -Pis) == 0  . ; [Eq. 22] 

i=l 

If this were not true then the attacker, who tries to maximize 

E, would choose  q = l  if  S>0  and  q = 0  if  S<0. 

With Eqs. 16 and 22 

3 
MAX E  - E   p^ p^^ . 

i=l 

The target has to minimize this under the condition       , 
■ 

3 
S = 0    and  E p. = 1 . 

i-1 ^ 

The condition  S == 0  can be transformed into a relationship 

between  pj  and  pg ,  the term with  P3  being cancelled 

because  ^^ ~ P32 •  The result is 

PlC^n-Pis)  -  P2(p22-32i)  » [Eq. 23] 

In the expression for MAX E, ps  is replaced by 1 - P| - Pg 

and then  pg  is substituted using Eq. 23=  This leads to 

MAX E =   031 +Pi [Pi 2 " 031 +(P22-P3i) I^TT^]  • 

The target can minimize this by choosing  pj = 1  or  Pj == 0, 

.^   depending on whether the expression in the bracket is negative 

or positive. 

Again the argument is used that we seek a solution using mixed 

strategies and consequently the factor multiplying  Pj  must be 

equal to zero.  It turns out that this is true if Eq. 20 is 

fulfilled.  Therefore, 

MIN -MAX E  -  |3i     . [Eq, 24] 

22 



2.3.3   Value of the Game 

If the attacker maximizes  ggj  by an appropriate choice of  Xj 

and  Xg  that simultaneously satisfy Eq. 20, one finds from 

Eqs. 21 and 24 that the value of the game is 

P-5C-  =   MAX  p3i 

The question is when does 0--  become  equal to ^   ,      i.e., when 

does the solution of the game with mixed attacker strategy change 

into one with pure attacker strategy?  Appendix B briefly 

outlines the procedure for calculating the strategies  X|  and 

Xg  that maximize  gs^  and at the same time satisfy Eq. 20 and 

^^'" ~ 0J."  From a numerical calculation a relationship [see 

Fig. 10] between the variables  u  and  v  has been obtained 

that divides the u-v domain into two regionss  one with pure 

and one with mixed optimum strategies for the attacker. 

It should be mentioned that there may be a set of target 

strategies for which the value of the game is smaller than 

calculated.  Since the value of the game in the case of the 

pure attacker strategies,  ^  ,  approaches zero as  u tends to 

1, it follows that the boundary between pure and mixed optimum 

attacker strategies may be closer to  u == 1  than calculated. 
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CONCLUSION 

The main result of this analysis is given by Fig. 10, from 

which a quick decision can be made about which of the possible 

strategies is best for any given values of the effective damage 

radius,  e,  of the weapon and of the distances,  Rj  and Rg , 

that the target can travel from its detection position when 

using minimum and maximum evasion speeds respectively. 
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APPENDIX A 

THE OPTIMUM MIXED TARGET STRATEGY 

In Section 2,2 of the main text it was shown that in the vicinity 

of the solution of the game the expected pay-off to the attacker 

can be written as , 

E(p)  -  p Pi(X) + (1-p) p2(x) [Eq. A.l] 

with   P^(X)  =  8(R^, X),   i = 1, 2 

i 

and    p(R, X) -  arccos (^^ ^2RX" ^^ ^    ' t^^" ^'^^ 

The value of the game was found to be 
I 

■ 

P+  =  Pi (X+)  = hi^+) , [Eq. A. 3] 

where  X =  /RJ RS + e^    . [Eq. A.4] 

The problem to be solved here is the calculation of the mixed 

optimum strategy  p   of the target. 
+ I 

The derivative of the expected pay-off  E(|3)  with respect to 

X  must vanish at the optimum, i.e^ 

i  (P - P+. X = X^)  =  0 

Differentiating Eq. A.l yields 

Ux Jx^ 

"' ^ (^j - (if) 
TC+     x+ 

[Eq. A.5] 

25 



The derivative of  g  (i-1,2)  at  X,  can be calculated from 
J- + 

Eq. A.2.  One finds that the derivative of  ^.  at  X   is 

proportional to 

1   Rj +R 

^i ~ 2 X^2 

and therefore 

P+ 

1 Rj,   +R2 

Ra 2 X^2 

1 R,  +Rp 

Ri 
2 X_^2 

1-p^  '  "   1    R, +R.    • [Eq. A. 6] 

Multiplying the numerator and dominator of Eq, A,6 by 

X^^ = Rj Rg + e^  and cancelling some terms yields 

P+   ^   0.5(Rs - Rg ) - eVRs 

1-P+  ~   0„5(R2 - Rj ) + eVRi     ' ^^"l- ^""^^ 

At this point the dimensionless variables  u  and  v  are used. 

From their definition in Eq. 3 one finds 

o.5(R.-R.)   - i,^    ' T-.'t  ' ^rr^   ■ 

Replacing these ter^ms in Eq. A. 7 and multiplying through by  u/e 

leads to 

P+    ^   1 - u^/2 V 
1 - p^      1 - u^/2 (v-1) 

This equation is finally solved for  u, to give 

u 2    0 • 5 - p , 

^2)   ^ v-l+p^  ^° (^-■^) [Eq. A.8] 

Plots of  u  versus  v  for given values of  p   are shown in 

Fig, A.l. 
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Obviously,      p        must   lie   in  the   interval 

0 ^ p + ^ 0.5      , 

otherwise     u*^   <   0, 

0.2 0.1 0 

Ro  - R, 

R2 - R] 
^ u 

FIG. A.1    MIXED OPTIMUM TARGET STRATEGY    ISO-PROBABILITY CURVES 
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APPENDIX B 

TRANSITION FROM PURE TO MIXED ATTACKER STRATEGIES 

As pointed out in Section 2,3 of the main text, the game has a 

solution with a mixed optimum strategy for the attacker, if the 

equation ' 

03^ = ' — ^  [Eq. B.l] 

is satisfied and  gg^  is maximized by the attacker» 

Suppose two arbitrary aimpoints  X , Xg (X, < X^)  are given that 

determine the target strategy  R  and the angle  Psj, as shown 

in Figo B^l,  The values of  R  and  gg^  can be computed as 

functions of the aimpoints  Xj  and  Xg  as follows. 

Because the point with the coordinate  R,  gg^  has the same 

distance  e  from the two aimpoints  X   and  Xg,  it is clear 

from Figo B,l that 

R cos paj  =  0,5 (Xj + Xg) ; 

. ■ 1 

Rsinpaj  =^ye^-0,25 (Xg-X^)^   . 

From those two equations the relationship 

0,5 (x^ + Xg) 
COS S'51 —     --^-——-—-—————■ 

'    A X,+ e^' [Eq» B.2] 

is obtained. 
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Furthermore, the angles  B^   can also be expressed as functions of 

the aimpoints by 

cos p. . 
R.2 +X.2 - e^ 

2 R. X . 
1  J 

^, 3 1,  2 [Eq. B.3] 

and hence the right side of Eq. B,l as a function of  X^  and  X2 o 

It should be mentioned that in Eqso B.2 and Bo 3 the right side can 

be divided by  e  and  e^  respectively^and consequently only the 

four variables X.,        and  R. .   (i, j == 1, 2) are involvedo 
j / e        -1 / G 

On the other hand^ there are three conditions to be fulfilled 

1. MAX Psi 

2. Equation B.l 

3. MAX ^31  -  0-?'^  -  p^ 

This leaves one degree of freedom in the problem and therefore a 

relationship between  Ri/e  ^ind ^2 /e     should be obtained. 

Because of its complexity, the problem was solved numerically and 

the result  was plotted in Fag. 10 of the main text as a curve in 

the  u-v  plane.  This is possible since ^i/e    ^^^     ^s/e     ^^" ^® 

expressed in terms of  u  and  v.  The interpretation of this 

curve is that the value of the game with pure attacker strategy 

is equal to the one with mixed attacker strategy. 

FiG. BJ GEOMETRY FOR TWO-AIMPOINT STRATEGY 
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